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Abstract 

Data in distributed system is dispersed in a structured, unstructured or semi-structured format. Data is distributed across 

various institutions organizations or individuals. These institutions are analogous to the working nodes. This dispersed data 

needs to be handled properly in two respects one for ensuring data security and privacy another is enhancing fault tolerance. 

Data security and privacy has become a prime concern for data centric applications. Robust fault tolerant platform is required 

for smooth functioning of the distributed system. The intuitive and robust model FedLearning is framed for distributed 

learning. FedLearning is based on ensemble learning, in which neural network models are deployed independently on each 

data unit at the local working node. All the local working model’s parameters are combined and collected by the secure 

coordinating nodes. Federated learning performs the coordination among the working nodes. Coordination prevents the failures 

of individual working machines. 
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1. Introduction 

 
Fault tolerant platform is an essential part of distributed computing for preventing the system from failures. Federated learning 

is a distributed and decentralized paradigm of protocols [1], [2], [3]. Federated learning approach is well suited for a 

distributed system because a set of worker machine (or client) can train the local models. Different chunks of datasets are 

distributed among the worker nodes or third parties. Here sections of dataset are not shared by the working computational 

nodes. Thus federated learning is also the most significant model for achieving data privacy and data security in addition to 

fault tolerance [4], [5]. We deployed a framework by using federated learning algorithms with a parameter server. The existing 

federated learning (FL) approaches highlights optimizing only one dimension of the target space. The proposed novel methods 

can reduce the communication cost and improve the efficiency of the distributed computing. The FedLearning method 

minimizes the adversarial effect with high convergence rate. This approach utilizes a straggler-aware, weighted aggregation for 

accuracy improvement [6], [7], [8]. FedLearning is capable to detect and diagnose the faults that occur frequently on end-user 

devices as well as on the edge. FedLearning is a novel communication efficient FL approach. It incorporates both the 

synchronous and asynchronous arrangements. 

Federated learning is a multi-modal machine learning system that trains the algorithm among various distributed and 

decentralized edge devices that holds local datasets. The intelligent device such as PDAs, smart-phones, and desktops or 

tablets system has been scaling rapidly in recent years. Most of these devices are equipped with multiple sensors that allow 

them to produce and consume a huge amount of information. Distributed computing hierarchy consists of cloud, edge, and 

end-user devices [9], [10], [11], [12]. End-user devices train the local models and use local datasets. The parameter server is 

deployed at the cloud layer and performs the task of aggregating the local updates and upgrading the global model after 

receiving the updated local models. Edge works as an intermediate layer between the cloud and end-devices. Edge acts almost 

similar to the cloud, it performs the task of taking the output of end devices as input, applies aggregation and classification if 

necessary, and finally transfers its intermediate output to the cloud system for further processing if required [13], [14], [15].  
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The proposed algorithms is based on ensemble learning, in which local gradients obtained from working nodes are aggregated 

by separate module called aggregator. Stochastic Gradient Descent (SGD) algorithm is the most prominent machine learning 

algorithm. In this research work, the variant of SGD that is distributed SGD (DSGD) is proposed and it is deployed in the 

aforementioned model. DSGD is implemented as federated learning. 

 

2. System Architecture  

As illustrated in Figure 1 the proposed model is administered by a main controller known as central server or parameter server 

which is assisted by secondary controller. The primary function of main controller is to receive request from edge devices and 

then assign them to the appropriate machine for further processing. The key objective of central server is the orchestration of 

the various working modules [16], [17], [18], [19], [20]. The different modules and functions of the proposed architecture are 

organized and controlled by algorithmic modules. The key objective of the proposed model is to improve the fault tolerance by 

enhancing fault prediction module.  

System topology for federated with distributed learning consists of a graph G = (V, E), where the V = set of working nodes (or 

sequential processes) and E = set of edges (bi/unidirectional communication channel or links) [21], [22],. Fig. 1 shows the 

graph of the proposed model. In the graph, nodes represent heterogeneous edge or end devices and the edge represents 

communication channel. The links between the nodes may be guided on unguided. In the context of cloud computing nodes 

may also represent the groups or clusters of the end devices [23], [24], [25]. The propose graph topology for distributed 

federated learning approach deploys the multiple edge (or end) devices like mobile phone, smart sensors etc. End device 

executes the process and the communication among the processes is performed through the message passing. Each edge device 

has its own model with local dataset [26], [27], [28], [29]. 
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Figure 1: Architecture of Distributed Deep Neural Network with Federated Learning 

 

Figure 1 shows the schematic diagram for distributed computing environment. Here each edge device may forms a cluster or 

computing cloud. Proposed methodology works on each edge device [30], [31], [32], [33] [34]. Edge devices are vast 

consumer or producer of big data In users’ perspective the data at users’ end is very confidential. Hence data security and 

privacy is paramount concern. In system perspective these edge or end devices may produce various kinds of faults in great 

extent [35], [36], [37], [38], [39], [40]. 

To make system reliable, fault resilient platform [41-46] must be implemented in the existing distributed system. Faults may be 

of two kinds: physical fault [47-56] and computational faults. The present work deal only computational faults [57-65]. 

 

3. Proposed Methodologies 

FedLearning algorithm incorporates ensemble learning approach and establishes a coordination among multiple distributed 

working machines [66-74]. 

 

Cloud 

Cloud 
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FedLearning algorithm 

Algorithm: FedLearning  

Input: Dataset x 

Output: Fault Tolerant Model  

1. Initialize model parameter set θ 

2. for i in iteration do 

3.           Forward propagation: outputi = ƒƿ (xi , θi); 

4.           Evaluate cost function: ci = cost (α(xi), outputi); 

5.           if ci < ɛ then 

6.                     Break; 

7.           else 

8.                     Backword propagation: gradienti =  bƿ (xi , θi, ci); 

9.           Send edge devices’ gradients to parameter computing central server    

                         and obtain new updated gradients; 

10.           Update: θi+1 = θi – η * gradientnew ; 

11.           end if 

12.  end for 

13.  return Model with parameter set θ            

 Table 1. Description of parameters/hyperparameter used in FedLearning 

S. 

No. 

Parameter/Hyperparameter  Description 

1 xi Data point at ith iteration 

2 θ Set of Model parameters 

3 ƒƿ Feedforward procedure 

4 α The activation function 

5 cost The cost or loss function 

6 output The output of each epoc 

7 ci Cost evaluated by cost function on ith iteration 

8 bƿ Backward propagation procedure 

9 ɛ Error arbitrarily chosen very small 

10 gradienti Gradient evaluated by bƿ process 

11 gradientnew Gradient evaluated by central computing server 

12 η Learning rate of training 

The objective of this research work is to deal with the computational fault tolerance. The computational 

fault tolerance refers to a system which is tolerant to changes in the functionality occurring from the 

operation of the abstract components in the system being defective. 

4. Experimental Setup 

4.1 Benchmark Dataset 

Appropriate datasets that can help to train, test and validate the fault prediction algorithm are rarely available or accessible for 

research work. It creates a major problem to the research process in the domain of fault tolerance and fault prevention [75-77]. 

Disk failure is a very common kind of failure in traditional computing system. This research uses backblaze hard drive failure 

rates dataset for training the proposed model.  

Backblaze Hard Drive Failure Rates for 2020 

(Reporting Period 01/01/2020 – 12/31/2020 inclusive) 
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MFG Model Drive 

Size 

Drive 

Count 

Avg Age 

(Months) 

Drive 

Days 

Drive 

Failures 

AFR 

HGST HMS5C4040ALE640 4TB 3,100 56.65 1,083,774 8 0.27% 

HGST HMS5C4040BLE640 4TB 12,744 50.43 4,663,049 34 0.27% 

HGST HMS5C4040ALE600 8TB 1,075 34.85 372,000 3 0.29% 

HGST HMS5C4040ALE600 12TB 2,600 15.04 820,272 7 0.31% 

HGST HMS5C4040ALE604 12TB 2,506 3.78 275,779 9 1.19% 

HGST HMS5C4040ALE604 12TB 10,830 21.01 3,968,475 50 0.46% 

Seagate ST4000DM000 4TB 18,939 62.35 6,983,470 269 1.41% 

Seagate ST6000X000 6TB 886 68.84 324,275 2 0.23% 

Seagate ST8000DM002 8TB 9,772 51.07 3,584,788 91 0.93% 

Seagate ST8000NM005 8TB 14,406 41.34 5,286,790 177 1.22% 

Seagate ST10000NM0086 10TB 1,201 38.73 439,247 16 1.33% 

Seagate ST12000NM0007 12TB 23,036 29.78 11,947,303 339 1.04% 

Seagate ST12000NM0008 12TB 19,287 9.76 5,329,149 148 1.01% 

Seagate ST12000NM001G 12TB 7,130 6.08 454,090 30 0.84% 

Seagate ST14000NM001G 14TB 5,987 2.89 5,784 13 1.04% 

Seagate ST14000NM0138 14TB 360 1.56 21,323 0 0.00% 

Seagate ST16000NM001G 16TB 59 12.93 5,820 1 1.71% 

Seagate ST18000NM000J 16TB 60 3.27 36,234 2 12.54% 

Toshiba MD04ABA400V 4TB 99 67.29 4,103,823 0 0.00% 

Toshiba MG07ACA14TA 14TB 21,046 7.65 2,562 102 0.91% 

Toshiba MG07ACA14TEY 14TB 160 1.22 33,774 0 0.00% 

Toshiba MG07ACA16TEY 16TB 1,014 2.14 33,774 0 0.00% 

WDC WUH721414ALE6L4 14TB 6,002 1.68 229,861 1 0.16% 

  TOTAL 162,299  51,267,791 1,302 0.93% 

The proposed training algorithm also uses a benchmark data set which is retrieved from a Hadoop Distributed File System 

(HDFS). 

4.2 Simulation Tools 

The proposed algorithm is implemented by using Google Colab and CloudSim simulators. Python and R language have been 

used for model implementation.  

5. Comparison with the Existing Model 

The proposed model is compatible with tolerating the arbitrary faults occurring in distributed system. As compared to other 

model this algorithm produces very smaller training loss. 

 

 

6.  Conclusions and Discussion 

In the proposed model the participating edge device trains its own model with local dataset. These local datasets are not 

sharable among the edge devices hence the system preserves the privacy- sensitive personal data. Federated learning 

collaborates with machine learning without centralized training of the data. 

7. Future Work 

Federated learning poses some of the key problems which have to be resolved: one of the problems is communication cost and 

other one is unreliability of the end devices that need not necessarily participate in the FL process. The proposed line of work 

opens the options for further research in direction of data security and privacy of the personal data. 
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